Discrete Symmetries Analysis of Burgers Equation with Time Dependent Flux at the Origin
نویسندگان
چکیده
In this work, we consider the Lie's method of infinitesimal transformation groups and discrete symmetries method for Burgers equation with time dependent flux at the origin. Following the Lie's method of infinitesimal transformation groups we determine the symmetry reductions and similarity solutions of the governing equation. By applying discrete symmetries analysis we have obtained three groups of discrete symmetries which lead to new symmetry reductions and similarity solutions of our problem. The analytical solutions which are obtained using symmetries and discrete symmetries are summarized in table form.
منابع مشابه
Symmetry analysis of time-fractional potential Burgers' equation
Lie point symmetries of time-fractional potential Burgers' equation are presented. Using these symmetries fractional potential Burgers' equation has been transformed into an ordinary differential equation of fractional order corresponding to the Erdélyi-Kober fractional derivative. Further, an analytic solution is furnished by means of the invariant subspace method. AMS subject classifications:...
متن کاملElectro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملDiscretization of partial differential equations preserving their physical symmetries
A procedure for obtaining a “minimal” discretization of a partial differential equation, preserving all of its Lie point symmetries is presented. “Minimal” in this case means that the differential equation is replaced by a partial difference scheme involving N difference equations, where N is the number of independent and dependent variable. We restrict to one scalar function of two independent...
متن کاملOn symmetries of KdV-like evolution equations
It is well known that provided scalar (1+1)-dimensional evolution equation possesses the infinitedimensional commutative Lie algebra of time-independent non-classical symmetries, it is either linearizable or integrable via inverse scattering transform [1, 2]. The standard way to prove the existence of such algebra is to construct the recursion operator [2]. But Fuchssteiner [3] suggested an alt...
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کامل